Translate

jueves, 3 de enero de 2008

Stephen Hawking¿Juega Dios a los Dados? - Parte I


(Imagen de Hawking)


Traductores : José Luis Acuña / Ariadna Martínez

Esta conferencia versa sobre si podemos predecir el futuro o bien éste es arbitrario y aleatorio. En la antigüedad, el mundo debía de haber parecido bastante arbitrario. Desastres como las inundaciones o las enfermedades debían de haber parecido producirse sin aviso o razón aparente. La gente primitiva atribuía esos fenómenos naturales a un panteón de dioses y diosas que se comportaban de una forma caprichosa e impulsiva. No había forma de predecir lo que harían, y la única esperanza era ganarse su favor mediante regalos o conductas. Mucha gente todavía suscribe parcialmente esta creencia, y tratan de firmar un pacto con la fortuna. Se ofrecen para hacer ciertas cosas a cambio de un sobresaliente en una asignatura, o de aprobar el examen de conducir.
Sin embargo, la gente se debió de dar cuenta gradualmente de ciertas regularidades en el comportamiento de la naturaleza. Estas regularidades eran más obvias en el movimiento de los cuerpos celestes a través del firmamento. Por eso la Astronomía fue la primera ciencia en desarrollarse. Fue puesta sobre una firme base matemática por Newton hace más de 300 años, y todavía usamos su teoría de la gravedad para predecir el movimiento de casi todos los cuerpos celestes. Siguiendo el ejemplo de la Astronomía, se encontró que otros fenómenos naturales también obedecían leyes científicas definidas. Esto llevó a la idea del determinismo científico, que parece haber sido expresada públicamente por primera vez por el científico francés Laplace. Me pareció que me gustaría citar literalmente las palabras de Laplace. y le pedí a un amigo que me las buscara. Por supuesto que están en francés, aunque no esperaba que la audiencia tuviera ningún problema con esto. El problema es que Laplace, como Prewst [N. del T.: Hawking probablemente se refiere a Proust], escribía frases de una longitud y complejidad exageradas. Por eso he decidido parafrasear la cita. En efecto, lo que él dijo era que, si en un instante determinado conociéramos las posiciones y velocidades de todas las partículas en el Universo, podríamos calcular su comportamiento en cualquier otro momento del pasado o del futuro. Hay una historia probablemente apócrifa según la cual Napoleón le preguntó a Laplace sobre el lugar de Dios en este sistema, a lo que él replicó "Caballero, yo no he necesitado esa hipótesis". No creo que Laplace estuviera reclamando que Dios no existe. Es simplemente que El no interviene para romper las leyes de la Ciencia. Esa debe ser la postura de todo científico. Una ley científica no lo es si solo se cumple cuando algún ser sobrenatural lo permite y no interviene.
La idea de que el estado del universo en un instante dado determina el estado en cualquier otro momento ha sido uno de los dogmas centrales de la ciencia desde los tiempos de Laplace. Eso implica que podemos predecir el futuro, al menos en principio. Sin embargo, en la práctica nuestra capacidad para predecir el futuro está severamente limitada por la complejidad de las ecuaciones, y por el hecho de que a menudo exhiben una propiedad denominada caos. Como sabrán bien todos los que han visto Parque Jurásico, esto significa que una pequeña perturbación en un lugar puede producir un gran cambio en otro. Una mariposa que bate sus alas puede hacer que llueva en Central Park, Nueva York. El problema es que eso no se puede repetir. La siguiente vez que una mariposa bata sus alas, una multitud de otras cosas serán diferentes, lo que también tendrá influencia sobre la meteorología. Por eso las predicciones meteorológicas son tan poco fiables.
A pesar de estas dificultades prácticas, el determinismo científico permaneció como dogma durante el siglo 19. Sin embargo, en el siglo 20 ha habido dos desarrollos que muestran que la visión de Laplace sobre una predicción completa del futuro no puede ser llevada a cabo. El primero de esos desarrollos es lo que se denomina mecánica cuántica. Fue propuesta por primera vez en 1900, por el físico alemán Max Planck, como hipótesis ad hoc para resolver una paradoja destacada. De acuerdo con las ideas clásicas del siglo 19, que se remontan a los tiempos de Laplace, un cuerpo caliente, como una pieza de metal al rojo, debería emitir radiación. Perdería energía en forma de ondas de radio, infrarrojos, luz visible, ultravioleta, rayos x, y rayos gamma, todos a la misma tasa. Esto no sólo significaría que todos moriríamos de cáncer de piel, sino que además todo en el universo estaría a la misma temperatura, lo que claramente no es así. Sin embargo, Planck mostró que se puede evitar este desastre si se abandonara la idea de que la cantidad de radiación puede tener cualquier valor, y se dijera en su lugar que la radiación llega únicamente en paquetes o cuantos de un cierto tamaño. Es un poco como decir que en el supermercado no se puede comprar azúcar a granel, sino sólo en bolsas de un kilo. La energía en los paquetes o cuantos es mayor para los rayos x y ultravioleta, que para la luz infrarroja o visible. Esto significa que a menos que un cuerpo esté muy caliente, como el Sol, no tendrá suficiente energía para producir ni siquiera un único cuanto de rayos x o ultravioleta. Por eso no nos quemamos por insolación con una taza de café.
Para Planck los cuantos no eran más que un truco matemático que no tenía una realidad física, lo que quiera que eso signifique. Sin embargo, los físicos empezaron a encontrar otro comportamiento, que sólo podía ser explicado en términos de cantidades con valores discretos o cuantizados, más que variables continuas. Por ejemplo, se encontró que las partículas elementales se comportaban más bien como pequeñas peonzas girando sobre un eje. Pero la cantidad de giro no podía tener cualquier valor. Tenía que ser algún múltiplo de una unidad básica. Debido a que esa unidad es muy pequeña, uno no se da cuenta de que una peonza normal decelera mediante una rápida secuencia de pequeños pasos, más que mediante un proceso continuo. Pero para peonzas tan pequeñas como los átomos, la naturaleza discreta del giro es muy importante.
Pasó algún tiempo antes de que la gente se diera cuenta de las implicaciones que tenía este comportamiento cuántico para el determinismo. No sería hasta 1926, cuando Werner Heisenberg, otro físico alemán, indicó que no podrías medir exactamente la posición y la velocidad de una partícula a la vez. Para ver dónde está una partícula hay que iluminarla. Pero de acuerdo con el trabajo de Planck, uno no puede usar una cantidad de luz arbitrariamente pequeña. Uno tiene que usar al menos un cuanto. Esto perturbará la partícula, y cambiará su velocidad de una forma que no puede ser predicha. Para medir la posición de la partícula con exactitud, deberás usar luz de una longitud de onda muy corta, como la ultravioleta, rayos x o rayos gamma. Pero nuevamente, por el trabajo de Planck, los cuantos de esas formas de luz tienen energías más altas que las de la luz visible. Por eso perturbarán aún más la velocidad de la partícula. Es un callejón sin salida: cuanto más exactamente quieres medir la posición de la partícula, con menos exactitud puedes conocer la velocidad, y viceversa. Esto queda resumido en el Principio de Incertidumbre formulado por Heisenberg; la incertidumbre en la posición de una partícula, multiplicada por la incertidumbre en su velocidad, es siempre mayor que una cantidad llamada la constante de Planck, dividida por la masa de la partícula.