Translate

miércoles, 13 de abril de 2016

Discovery and Development of Penicillin

Penicillin (sometimes abbreviated PCN or pen) is a group of antibiotics derived from Penicillium fungi, including penicillin G (intravenous use), penicillin V (oral use), procaine penicillin, and benzathine penicillin (intramuscular use).

Penicillin antibiotics were among the first drugs to be effective against many previously serious diseases, such as bacterial infections caused by staphylococci and streptococci. Penicillins are still widely used today, though misuse has now made many types of bacteria resistant. All penicillins are β-lactam antibiotics and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.

Several enhanced penicillin families also exist, effective against additional bacteria: these include the antistaphylococcal penicillins, aminopenicillins and the more-powerful antipseudomonal penicillins.
The discovery of penicillin is attributed to Scottish scientist and Nobel laureate Alexander Fleming in 1928. He showed that, if Penicillium rubens were grown in the appropriate substrate, it would exude a substance with antibiotic properties, which he dubbed penicillin. This serendipitous observation began the modern era of antibiotic discovery. The development of penicillin for use as a medicine is attributed to the Australian Nobel laureate Howard Walter Florey, together with the German Nobel laureate Ernst Chain and the English biochemist Norman Heatley.

THE DISCOVERY OF PENICILLIN

Fleming recounted that the date of his discovery of penicillin was on the morning of Friday, September 28, 1928. It was a fortuitous accident: in his laboratory in the basement of St. Mary's Hospital in London (now part of Imperial College), Fleming noticed a Petri dish containing Staphylococcus plate culture he mistakenly left open, was contaminated by blue-green mould, which formed a visible growth. There was a halo of inhibited bacterial growth around the mould. Fleming concluded the mould released a substance that repressed the growth and caused lysing of the bacteria. He grew a pure culture and discovered it was a Penicillium mould, now known to be Penicillium notatum. Charles Thom, an American specialist working at the U.S. Department of Agriculture, was the acknowledged expert, and Fleming referred the matter to him. Fleming coined the term "penicillin" to describe the filtrate of a broth culture of the Penicillium mould. Even in these early stages, penicillin was found to be most effective against Gram-positive bacteria, and ineffective against Gram-negative organisms and fungi. He expressed initial optimism that penicillin would be a useful disinfectant, being highly potent with minimal toxicity compared to antiseptics of the day, and noted its laboratory value in the isolation of Bacillus influenzae (now Haemophilus influenzae).[19] After further experiments, Fleming was convinced penicillin could not last long enough in the human body to kill pathogenic bacteria, and stopped studying it after 1931. He restarted clinical trials in 1934, and continued to try to get someone to purify it until 1940

Alexander Fleming’s Discovery of Penicillin

Penicillin heralded the dawn of the antibiotic age. Before its introduction there was no effective treatment for infections such as pneumonia, gonorrhea or rheumatic fever. Hospitals were full of people with blood poisoning contracted from a cut or a scratch, and doctors could do little for them but wait and hope.

Antibiotics are compounds produced by bacteria and fungi which are capable of killing, or inhibiting, competing microbial species. This phenomenon has long been known; it may explain why the ancient Egyptians had the practice of applying a poultice of moldy bread to infected wounds. But it was not until 1928 that penicillin, the first true antibiotic, was discovered by Alexander Fleming, Professor of Bacteriology at St. Mary's Hospital in London.
Returning from holiday on September 3, 1928, Fleming began to sort through petri dishes containing colonies of Staphylococcus, bacteria that cause boils, sore throats and abscesses. He noticed something unusual on one dish. It was dotted with colonies, save for one area where a blob of mold was growing. The zone immediately around the mold—later identified as a rare strain of Penicillium notatum—was clear, as if the mold had secreted something that inhibited bacterial growth.
Fleming found that his "mold juice" was capable of killing a wide range of harmful bacteria, such as streptococcus, meningococcus and the diphtheria bacillus. He then set his assistants, Stuart Craddock and Frederick Ridley, the difficult task of isolating pure penicillin from the mold juice. It proved to be very unstable, and they were only able to prepare solutions of crude material to work with. Fleming published his findings in the British Journal of Experimental Pathology in June 1929, with only a passing reference to penicillin's potential therapeutic benefits. At this stage it looked as if its main application would be in isolating penicillin-insensitive bacteria from penicillin-sensitive bacteria in a mixed culture. This at least was of practical benefit to bacteriologists, and kept interest in penicillin going. Others, including Harold Raistrick, Professor of Biochemistry at the London School of Hygiene and Tropical Medicine, tried to purify penicillin but failed.

Penicillin Research at Oxford University

It was Howard Florey, Ernst Chain and their colleagues at the Sir William Dunn School of Pathology at Oxford University who turned penicillin from a laboratory curiosity into a life-saving drug. Their work on the purification and chemistry of penicillin began in earnest in 1939, just when wartime conditions were beginning to make research especially difficult. To carry out a program of animal experiments and clinical trials the team needed to process up to 500 liters a week of mold filtrate. They began growing it in a strange array of culture vessels such as baths, bedpans, milk churns and food tins. Later, a customized fermentation vessel was designed for ease of removing and, to save space, renewing the broth beneath the surface of the mold. A team of "penicillin girls" was employed, at £2 a week, to inoculate and generally look after the fermentation. In effect, the Oxford laboratory was being turned into a penicillin factory.

Meanwhile, biochemist Norman Heatley extracted penicillin from huge volumes of filtrate coming off the production line by extracting it into amyl acetate and then back into water, using a countercurrent system. Edward Abraham, another biochemist who was employed to help step up production, then used the newly discovered technique of alumina column chromatography to remove impurities from the penicillin prior to clinical trials.
In 1940, Florey carried out vital experiments, showing that penicillin could protect mice against infection from deadly Streptococci. Then, on February 12, 1941, a 43-year old policeman, Albert Alexander, became the first recipient of the Oxford penicillin. He had scratched the side of his mouth while pruning roses, and had developed a life-threatening infection with huge abscesses affecting his eyes, face, and lungs. Penicillin was injected and within days he made a remarkable recovery. But supplies of the drug ran out and he died a few days later. Better results followed with other patients though and soon there were plans to make penicillin available for British troops on the battlefield.
War-time conditions made industrial production of penicillin difficult. A number of British companies, including Glaxo (now GlaxoSmithKline) and Kemball Bishop, a London firm later bought by Pfizer, took up the challenge.

Penicillin Production in the United States during WWII

Substantial amounts of penicillin would be needed for the extensive clinical trials required to confirm the promise of the early results and to provide adequate supplies of the drug for therapeutic use if it did live up to its potential. Florey recognized that large-scale production of penicillin was probably out of the question in Britain, where the chemical industry was fully absorbed in the war effort. With the support of the Rockefeller Foundation, Florey and his colleague Norman Heatley traveled to the United States in the summer of 1941 to see if they could interest the American pharmaceutical industry in the effort to produce penicillin on a large scale.
Yale physiologist John Fulton helped to put his British colleagues in touch with individuals who might be able to assist them in their goal. They were referred to Robert Thom of the Department of Agriculture, a foremost mycologist and authority on the Penicillium mold, and eventually to the Department's Northern Regional Research Laboratory (NRRL) in Peoria, Illinois, because of the expertise of its Fermentation Division. This contact proved to be crucial to the success of the project, as the NRRL was a key contributor of innovations that made large-scale production of penicillin possible.

Human experimentation

In a 1946 to 1948 study in Guatemala, U.S. researchers used prostitutes to infect prison inmates, insane asylum patients, and Guatemalan soldiers with syphilis and other sexually transmitted diseases (STDs), to test the effectiveness of penicillin in treating such diseases. They later tried infecting people with "direct inoculations made from syphilis bacteria poured into the men's penises and on forearms and faces that were slightly abraded ... or in a few cases through spinal punctures". Approximately 1300 people were infected as part of the study. The study was sponsored by the Public Health Service, the National Institutes of Health and the Pan American Health Sanitary Bureau (now the World Health Organization's Pan American Health Organization) and the Guatemalan government. The team was led by John Charles Cutler, who later participated in the Tuskegee syphilis experiments. Cutler chose to do the study in Guatemala because he would not have been permitted to do it in the United States. The Presidential Commission for the Study of Bioethical Issues determined that 83 people died; however, it was not possible to determine whether the experiments were the direct cause of death.

Total synthesis

Chemist John C. Sheehan at the Massachusetts Institute of Technology (MIT) completed the first chemical synthesis of penicillin in 1957. Sheehan had started his studies into penicillin synthesis in 1948, and during these investigations developed new methods for the synthesis of peptides, as well as new protecting groups—groups that mask the reactivity of certain functional groups.[45][46] Although the synthesis developed by Sheehan was not appropriate for mass production of penicillins, one of the intermediate compounds in Sheehan's synthesis was 6-aminopenicillanic acid (6-APA), the nucleus of penicillin. Attaching different groups to the 6-APA 'nucleus' of penicillin allowed the creation of new forms of penicillin.

Developments from penicillin

The narrow range of treatable diseases or "spectrum of activity" of the penicillins, along with the poor activity of the orally active phenoxymethylpenicillin, led to the search for derivatives of penicillin that could treat a wider range of infections. The isolation of 6-APA, the nucleus of penicillin, allowed for the preparation of semisynthetic penicillins, with various improvements over benzylpenicillin (bioavailability, spectrum, stability, tolerance).

The first major development was ampicillin, which offered a broader spectrum of activity than either of the original penicillins. Further development yielded β-lactamase-resistant penicillins, including flucloxacillin, dicloxacillin, and methicillin. These were significant for their activity against β-lactamase-producing bacterial species, but were ineffective against the methicillin-resistant Staphylococcus aureus (MRSA) strains that subsequently emerged.

Another development of the line of true penicillins was the antipseudomonal penicillins, such as carbenicillin, ticarcillin, and piperacillin, useful for their activity against Gram-negative bacteria. However, the usefulness of the β-lactam ring was such that related antibiotics, including the mecillinams, the carbapenems and, most important, the cephalosporins, still retain it at the center of their structures.

Resource from:
ACS.org: http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/flemingpenicillin.html
Wikipedia: http://en.wikipedia.org/wiki/Penicillin